Analysis of the Micromachining Process of Dielectric and Metallic Substrates Immersed in Water with Femtosecond Pulses
نویسندگان
چکیده
Micromachining of 1 mm thick dielectric and metallic substrates was conducted using femtosecond pulse generated filaments in water. Several hundred microjoule energy pulses were focused within a water layer covering the samples. Within this water layer, non-linear self-action mechanisms transform the beam, which enables higher quality and throughput micromachining results compared to focusing in air. Evidence of beam transformation into multiple light filaments is presented along with theoretical modeling results. In addition, multiparametric optimization of the fabrication process was performed using statistical methods and certain acquired dependencies are further explained and tested using laser shadowgraphy. We demonstrate that this micromachining process exhibits complicated dynamics within the water layer, which are influenced by the chosen parameters.
منابع مشابه
Micromachining with a High Repetition Rate Femtosecond Fiber Laser
Industrial micromachining applications with ultrashort pulse lasers are often difficult to make practical due to the lack of robustness of the laser and the slow processing speed resulting from the low repetition rate. In the past, amplified, femtosecond lasers produced high pulse energies, but at a slow pulse repetition rate of around a kHz. The high repetition rate oscillators did not have en...
متن کاملFemtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices.
We describe a technique for surface and subsurface micromachining of glass substrates by using tightly focused femtosecond laser pulses at a wavelength of 1660 nm. A salient feature of pulsed laser micromachining is its ability to drill subsurface tunnels into glass substrates. To demonstrate a potential application of this micromachining technique, we fabricate simple microfluidic structures o...
متن کاملApplication of Femtosecond Laser pulses for Nanometer Accuracy Profiling of Quartz and Diamond Substrates and for Multi-Layered Targets and Thin-Film Conductors Processing
Research results and optimal parameters investigation of laser cut and profiling of diamond and quartz substrates by femtosecond laser pulses are presented. Profiles 10 μm in width, ~25 μm in depth and several millimeters long were made. Investigation of boundaries quality has been carried out with the use of AFM «Vecco». Possibility of technological formation of profiles and micro-holes in dia...
متن کاملHigh Power Femtosecond Fiber Chirped Pulse Amplification System for High Speed Micromachining
The need for improved precision in a wide variety of micromachining applications has driven scientific interest in ultrashort pulse lasers. Despite numerous demonstrations of reduced heat effect and improved processing quality, the utility of such lasers has been limited by the heavy demands placed upon laser performance. In addition to high contrast laser pulses with minimal pulse-to-pulse flu...
متن کاملپایدارسازی ساختار تتراگونال زیرکونیا در سرمتهای لایه نازکZr-O و وابستگی آن به اندازه بلورکها
In this research, thin films of Zr/ZrO2 composites were deposited by reactive magnetron sputtering technique on Si and fused Silica substrates, and their structures were investigated by XRD method. During the deposition of the cermet layers, a Zr metallic target was sputtered in a gas mixture of Ar and O2. By controlling of O2 flow rate, the different metal volume fractions in the cermet layer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Micromachines
دوره 6 شماره
صفحات -
تاریخ انتشار 2015